34 research outputs found

    Using ALOS PALSAR derived high - resolution DInSAR to detect slow - moving landslides in tropical forest: Cameron Highlands, Malaysia

    Get PDF
    Landslide is one of the natural hazards that pose maximum threat for human lives and property in mountainous regions. Mitigation and prediction of this phenomenon can be done through the detection of landslide-susceptible areas. Therefore, an appropriate landslide analysis is needed in order to map and consequently understand the characteristic of this disaster. One of the recent popular remote sensing techniques in deformation analysis is the differential interferometric synthetic aperture radar which is popularly known as DInSAR. Due to the mass vegetation condition in Malaysia, a long-wavelength synthetic aperture radar (∼24 cm) is required in order to be able to penetrate through the forests and reach the bare land. For that reason, ALOS PALSAR HH imagery was used in this study to derive a deformation map of the Gunung Pass area located in the tropical forest of the Cameron Highlands, Malaysia. In this study, the ascending orbit ALOS PALSAR images were acquired in September 2008, January 2009 and December 2009. Subsequently the displacement measurements of the study site (Gunung Pass) were calculated. The accuracy of the result was evaluated through its comparison with ground truth data using the R2 and root mean square error (RMSE) methods. The resulted deformation map showed the landslide locations in the study area from interpretation of the results with 0.84 R2 and 0.151 RMSE. The DInSAR precision was 11.8 cm which proved the efficiency of the proposed method in detecting landslides in a tropical country like Malaysia. It is highly recommended to use the proposed method for any other deformation studies

    Spatial prediction of flood susceptible areas using rule based decision tree (DT) and ensemble bivariate and multivariate statistical models in GIS

    Get PDF
    Flood is one of the natural hazards which occur all over the world and it is critical to be controlled through proper management. Severe flood events in Kelantan, Malaysia cause damage to both life and property every year, and therefore the development of flood model to recognize the susceptible areas in watersheds is important for decision makers. Remote sensing (RS) and geographic information system (GIS) techniques could be useful in hydrological studies while they are able to fulfill all the requirements for comprehensive, rapid and accurate analysis. The aim of the current research is to compare the prediction performances of two different approaches such as rule-based decision tree (DT) and combination of frequency ratio (FR) and logistic regression (LR) statistical methods for flood susceptibility mapping at Kelantan, Malaysia. DT is based on the rules which are created precisely and strongly by considering all the characteristics of the variables which can enhance the performance of the flood susceptibility mapping. On the other hand, LR as multivariate statistical analysis (MSA) has some weak points. For that reason, FR was used to analyze the impact of classes of each variable on flood occurrence and overcome the weakness of LR. At first, flood inventory map with a total of 155 flood locations was extracted from various sources over the part of the Kelantan. Then the flood inventory data was randomly divided into a testing dataset 70% (115 flood locations) for training the models and the remaining 30% (40 flood locations) was used for validation purpose. The spatial database includes digital elevation model (DEM), curvature, geology, river, stream power index (SPI), rainfall, land use/cover (LULC), soil type, topographic wetness index (TWI) and slope. For validation both success and prediction rate curves were performed. The validation results showed that, area under the curve for the results of DT and integrated method of FR and LR was 87% and 90% for success rate and 82% and 83% for prediction rate respectively

    A new semiautomated detection mapping of flood extent from TerraSAR-X satellite image using rule-based classification and Taguchi optimization techniques

    Get PDF
    Floods are among the most destructive natural disasters worldwide. In flood disaster management programs, flood mapping is an initial step. This research proposes an efficient methodology to recognize and map flooded areas by using TerraSAR-X imagery. First, a TerraSAR-X satellite image was captured during a flood event in Kuala Terengganu, Malaysia, to map the inundated areas. Multispectral Landsat imagery was then used to detect water bodies prior to the flooding. In synthetic aperture radar (SAR) imagery, the water bodies and flood locations appear in black; thus, both objects were classified as one. To overcome this drawback, the class of the water bodies was extracted from the Landsat image and then subtracted from that extracted from the TerraSAR-X image. The remaining water bodies represented the flooded locations. Object-oriented classification and Taguchi method were implemented for both images. The Landsat images were categorized into three classes, namely, urban, vegetation, and water bodies. By contrast, only water bodies were extracted from the TerraSAR-X image. The classification results were then evaluated using a confusion matrix. To examine the efficiency of the proposed method, iterative self-organizing data analysis technique (ISODATA) classification method was applied on TerraSAR-X after employing the segmentation process during object-oriented-rule-based method, and the results were compared. The overall accuracy values of the classified maps derived from TerraSAR-X using the rule-based method and Landsat imagery were 86.18 and 93.04, respectively. Consequently, the flooded locations were recognized and mapped by subtracting the two classes of water bodies from these images. The acquired overall accuracy for TerraSAR-X using ISODATA was considerably low at only 57.98. The current research combined the methods and the optimization technique used as an innovative flood detection application. The successful production of a reliable and accurate flood inventory map confirmed the efficiency of the methodology. Therefore, the proposed method can assist researchers and planners in implementing and expediting flood inventory mapping

    Development of an early warning system for brown planthopper (BPH) (Nilaparvata lugens) in rice farming using multispectral remote sensing

    Get PDF
    The spread of rice pests such as BPH in tropical areas is one of the best-known yield lost factors. Remote sensing can support precision farming practices for determining the location of spreads and using pesticide in the right place. In a specifically conducive environment like high temperature and heavy rainfall, BPH population will increase. To address this issue, detection of sheath blight in rice farming was examined by using SPOT-5 images. Also, the extraction of weather data derived from Landsat images for comparing with the BPH infestation was undertaken. Results showed that all the indices that recognize infected plants are significant at α = 0.01. Examination of the association between the disease indices indicated that band 3 (near infrared) and band 4 (mid infrared) in SPOT-5 images have a relatively high correlation for detecting diseased part from healthy ones. The selected indices declared better association for detecting healthy plants from diseased ones. Image investigations revealed that BPH were existing at the higher limits of tolerable temperatures when in the form of nymphs. With the knowledge that the late growth stage of plants has more severe BPH attacks, the results stated that BPH outbreak is particularly obvious in the north-west corner and middle regions of the maps and it is more likely to happen in specified ranges of temperature and RH, i.e. 29 °C <T< 32 °C, and 88 % <RH< 93 %

    GIS-based sustainable city compactness assessment using integration of MCDM, Bayes theorem and RADAR technology

    Get PDF
    In recent decades, compact urban development and smart cities are recognised as most sustainable urban form in an effort to protect natural environment. Therefore, evaluation of existing compactness and sustainability of an area is an essential task before the real development takes place. In the literature, it is possible to see some studies on city’s compactness assessment and most of them have considered only a few aspects of compact development analysis. This paper aims to analyse urban sustainability of Kajang city (Malaysia) through a comprehensive city compactness assessment using geographical information system and radar remote sensing technology. To measure building density, a RADAR image of the study area was used to extract built-up areas with the aid of pixel-based and object-based classification schemes. Mixed land use development, urban density and intensity were the main indicators of the analysis. Finally, multicriteria decision-making and Bayes theorems were applied for overall compactness assessment. Building density analysis was validated using standard confusion matrix, which showed more than 90% accuracy. Similarly, the root-mean squared error showed 0.35 for object-based classification. The results classified the zones of the Kajang city in the range of least to most compact zones with the compactness value of 0.00273–0.0146, respectively. The results obtained in this study can help local government to improve the compactness of least compact zones to make Kajang city more sustainable. Furthermore, the results revealed that efficient public transportation and proper community facilities are the key factors to achieve sustainable urban development

    Detection of vertical slope movement in highly vegetated tropical area of Gunung pass landslide, Malaysia, using L-band InSAR technique

    Get PDF
    Landslides are one of the most dangerous natural hazards in the world which have significant negative impact on so many lives and properties. Interferometric Synthetic Aperture Radar (InSAR) is an imaging technique for measuring changes in the detailed characteristics of the surface which is timely and cost effective. This research aimed to detect the landslide that occurred in Gunung pass area, Malaysia using InSAR generated from ALOSPALSAR repeat pass data. The signals information was converted into amplitude and phase for both scenes where the phases were used to construct the InSAR. Goldstein filter was used to reduce the phase noise and the results were used as an input for phase unwrapping. Using the unwrapped phase, the vertical displacement was measured and landslide was recognized. Results showed the efficiency of InSAR in detecting the movement of landslide in Gunung pass without the differential having to generate DInSAR. The results were validated using the observed reference point of the landslides and the root mean square error (RMSE) was 0.19. Furthermore, advance 3D processing was performed for measuring the volume of the landslides. The achievements of current research represented that PALSAR data yield excellent performance to generate the interferometric and landslide could be detected very precisely in highly vegetated tropical forest

    Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS

    Get PDF
    Flood is one of the most devastating natural disasters that occur frequently in Terengganu, Malaysia. Recently, ensemble based techniques are getting extremely popular in flood modeling. In this paper, weights-of-evidence (WoE) model was utilized first, to assess the impact of classes of each conditioning factor on flooding through bivariate statistical analysis (BSA). Then, these factors were reclassified using the acquired weights and entered into the support vector machine (SVM) model to evaluate the correlation between flood occurrence and each conditioning factor. Through this integration, the weak point of WoE can be solved and the performance of the SVM will be enhanced. The spatial database included flood inventory, slope, stream power index (SPI), topographic wetness index (TWI), altitude, curvature, distance from the river, geology, rainfall, land use/cover (LULC), and soil type. Four kernel types of SVM (linear kernel (LN), polynomial kernel (PL), radial basis function kernel (RBF), and sigmoid kernel (SIG)) were used to investigate the performance of each kernel type. The efficiency of the new ensemble WoE and SVM method was tested using area under curve (AUC) which measured the prediction and success rates. The validation results proved the strength and efficiency of the ensemble method over the individual methods. The best results were obtained from RBF kernel when compared with the other kernel types. Success rate and prediction rate for ensemble WoE and RBF-SVM method were 96.48% and 95.67% respectively. The proposed ensemble flood susceptibility mapping method could assist researchers and local governments in flood mitigation strategies

    Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method

    Get PDF
    Flood is one of the most commonly occurred natural hazards worldwide. Severe flood occurrences in Kelantan, Malaysia cause damage to both life and property every year. Due to the huge losses in this area, development of appropriate flood modeling is required for the government. Remote sensing and geographic information system techniques can support overall flood management as they can produce rapid data collection and analysis for hydrological studies. The existing models for flood mapping have some weak points that may improve through more sophisticated and ensemble methods. The current research aimed to propose a novel ensemble method by integrating support vector machine (SVM) and frequency ratio (FR) to produce spatial modeling in flood susceptibility assessment. In the literature, mostly statistical and machine learning methods are used individually; however, their integration can enhance the final output. The FR model can perform bivariate statistical analysis and evaluate the correlation between the flooding and classes of each conditioning factors. The weights achieved by FR can be assigned to each conditioning factor and the resulted factors can be used in SVM analysis. In order to examine the efficiency of the proposed ensemble method and to show the proficiency of SVM, another machine learning algorithm such as decision tree (DT) was applied and the results were compared. To perform the methods, the upper catchment of the Kelantan basin in Malaysia was chosen. First, a flood inventory map with a total of 155 flood locations were extracted from various sources over the study area. The flood inventory map was randomly divided into two dataset; 70 % (115 flood locations) for the purpose of training and the remaining 30 % (40 flood locations) was used for validation. The spatial database included digital elevation model, curvature, geology, river, stream power index, rainfall, land use/cover, soil type, topographic wetness index and slope. For model validation, area under curve method was used and both success and prediction rate curves were calculated. The validation results for ensemble method showed 88.71 and 85.21 % for success rate and prediction rate respectively. The DT model showed 87.00 and 82.00 % for the success rate and prediction rate respectively. It is evident that the accuracies were increased using the ensemble method. The acquired results proved the efficiency of the proposed ensemble method as rapid, accurate and reasonable in flood susceptibility assessment

    Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia

    Get PDF
    An 8 Richter Scale (RS) earthquake struck West Sumatra on Wednesday, 30 September 2009, at 17.16 pm which led to huge number of landslides. Hence a comprehensive landslide susceptibility mapping (LSM) should be produced in order to reduce the damages to people and infrastructures. In the international landslide literature, various statistical methods such as frequency ratio (FR) and logistic regression (LR) have been widely used individually for LSM, but they have some weaknesses. FR which is able to perform bivariate statistical analysis (BSA) assesses the influence of classes of each conditioning factor on landslide occurrence. However, the correlation between the factors is mostly neglected. On the other hand, LR is able to analyze the relationship among the factors while it is not capable to evaluate the classes of each landslide conditioning factor. This paper aims to propose an ensemble method of FR and LR in order to overcome their weak points. For LSM, a landslide inventory map with a total of 87 landslide locations was extracted from various sources. Then the landslide inventory was randomly divided into two datasets 70% for training the models and the remaining 30% was used for validation purpose. The landslide conditioning factors consist of: altitude, curvature, river, SPI, rainfall, soil type, soil texture, land use/cover (LULC), peak ground acceleration (PGA), geology, slope, aspect, lineament and topographic wetness index (TWI). Four PGA of 7.5, 8, 8.6 and 9 were acquired and PGA 8 which was related to the 2009 earthquake was used to generate the model. Finally, the produced landslide susceptibility maps were validated using an area under the (ROC) curve method. For the model which was derived by PGA 8, the validation results showed 84% and 78% success and prediction rates respectively. Furthermore, the prediction rates for the models made by PGA 7.2, 8.6 and 9 are 79%, 78% and 81% respectively. The result proved the reasonable efficiency of the proposed method for earthquake induced landslide susceptibility mapping. Also the proposed ensemble method can be used in other hazard studies as it is capable to produce rapid and accurate assessment for disaster management and decision making

    Data fusion technique using wavelet transform and taguchi methods for automatic landslide detection from airborne laser scanning data and QuickBird satellite imagery

    Get PDF
    Landslide mapping is indispensable for efficient land use management and planning. Landslide inventory maps must be produced for various purposes, such as to record the landslide magnitude in an area and to examine the distribution, types, and forms of slope failures. The use of this information enables the study of landslide susceptibility, hazard, and risk, as well as of the evolution of landscapes affected by landslides. In tropical countries, precipitation during the monsoon season triggers hundreds of landslides in mountainous regions. The preparation of a landslide inventory in such regions is a challenging task because of rapid vegetation growth. Thus, enhancing the proficiency of landslide mapping using remote sensing skills is a vital task. Various techniques have been examined by researchers. This study uses a robust data fusion technique that integrates high-resolution airborne laser scanning data (LiDAR) with high-resolution QuickBird satellite imagery (2.6-m spatial resolution) to identify landslide locations in Bukit Antarabangsa, Ulu Klang, Malaysia. This idea is applied for the first time to identify landslide locations in an urban environment in tropical areas. A wavelet transform technique was employed to achieve data fusion between LiDAR and QuickBird imagery. An object-oriented classification method was used to differentiate the landslide locations from other land use/covers. The Taguchi technique was employed to optimize the segmentation parameters, whereas the rule-based technique was used for object-based classification. In addition, to assess the impact of fusion in classification and landslide analysis, the rule-based classification method was also applied on original QuickBird data which have not been fused. Landslide locations were detected, and the confusion matrix was used to examine the proficiency and reliability of the results. The achieved overall accuracy and kappa coefficient were 90.06% and 0.84, respectively, for fused data. Moreover, the acquired producer and user accuracies for landslide class were 95.86% and 95.32%, respectively. Results of the accuracy assessment for QuickBird data before fusion showed 65.65% and 0.59 for overall accuracy and kappa coefficient, respectively. It revealed that fusion made a significant improvement in classification results. The direction of mass movement was recognized by overlaying the final landslide classification map with LiDAR-derived slope and aspect factors. Results from the tested site in a hilly area showed that the proposed method is easy to implement, accurate, and appropriate for landslide mapping in a tropical country, such as Malaysia
    corecore